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Protecting Multi-Lateral Localization Privacy in
Pervasive Environments
Tao Shu, Yingying Chen, and Jie Yang, Member, IEEE

Abstract—Location-based services (LBSs) have raised serious
privacy concerns in the society, due to the possibility of leaking
a mobile user's location information in enabling location-depen-
dent services. While existing location-privacy studies are mainly
focused on preventing the leakage of a user's location in accessing
the LBS server, the possible privacy leakage in the calculation of
the user's location, i.e., the localization, has been largely ignored.
Such a privacy leakage stems from the fact that a localization
algorithm typically takes the location of anchors (reference points
for localization) as input, and generates the target's location
as output. As such, the location of anchors and target could be
leaked to others. An adversary could further utilize the leakage
of anchor's locations to attack the localization infrastructure
and undermine the accurate estimation of the target's location.
To address this issue, in this paper, we study the multi-lateral
privacy-preserving localization problem, whereby the location
of a target is calculated without the need of revealing anchors'
location, and the knowledge of the localization outcome, i.e., the
target's location, is strictly limited to the target itself. To fully
protect the user's privacy, our study protects not only the user's
exact location information (the geo-coordinates), but also any side
information that may lead to a coarse estimate of the location.
We formulate the problem as a secure least-squared-error (LSE)
estimation for an overdetermined linear system and develop
three privacy-preserving solutions by leveraging combinations of
information-hiding and homomorphic encryption. These solutions
provide different levels of protection for location-side information
and resilience to node collusion and have the advantage of being
able to trade a user's privacy requirements for better computation
and communication efficiency. Through numerical results, we
verify the significant efficiency improvement of the proposed
schemes over existing multiparty secure LSE algorithms.

Index Terms—Homomorphic encryption, localization, location
privacy.
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I. INTRODUCTION

T HE WIDESPREAD application of location-based ser-
vices (LBSs) has recently raised serious concerns on the

issue of location privacy. In LBS, a mobile user first obtains its
location information from a localization infrastructure, and then
uses this information to obtain from an LBS server services
customized according to its location. While the mobile user can
enjoy the convenience brought by LBS, it is enticed to reveal its
location to enable and receive the service, leading to potential
leakage of the user's privacy. For example, by correlating
the user's location with the points-of-interest (POIs) the user
has visited, one can glimpse into many aspects of the user's
personal life [35], including religious belief, health situation,
political inclination, hobby affiliation, daily agenda, and so on.
There have been extensive location-privacy studies focused

on preventing an LBS server from learning a user's location
when the user accesses the server with his location information,
e.g., the -anonymity [16], [13], [27], the mix zones [1], [2],
[26], [31], the pseudonymmethods [8], [29], [32], and the -un-
observability [4], [5], [18]. While these measures prevent loca-
tion leakage in accessing the LBS server, they are all carried out
after the location has been calculated and obtained by the user,
and thus have largely overlooked possible location leakage orig-
inated from the calculation of the location, i.e., the localization
process.
In particular, privacy leakage in the localization process is

caused by the fact that a localization algorithm typically calcu-
lates a target's location based on the known location of several
reference points (a.k.a. anchors) and the ranging information be-
tween the anchors and the target. Because the algorithm takes
anchors' locations as input, and generates the target's location as
output, multisided privacy leakage can happen. On one side, an-
chors have to reveal their location information, rendering such
information potentially learnable by other nodes. This could
lead to severe security issues. For instance, in WiFi localization
an adversary can attenuate the signals from the access points
(APs) by making use of the leaked AP's location information
and attack the localization infrastructure (e.g., location spoofing
attack) [24], [39], [41]. On the other side, as the outcome of the
algorithm, the knowledge of the target's locationmay not be lim-
ited to the target itself. For example, the assisted-GPS (AGPS)
system widely employed in today's smartphones relies on net-
worked servers to calculate the location. As a result, the location
of the user is also known by these servers. Note that applying the
existing location-privacy LBS mechanisms to localization does
not provide a solution to the localization privacy problem. For
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example, to protect its location privacy, an anchor may use spa-
tial cloaking, one of the widely used -anonymity LBS mecha-
nisms, to blur its location when sharing this information with the
target. However, based on the blurred/polluted inputs, the target
will be unable to calculate its correct location, which should
have been the primary goal of the localization process.
While existing research on the localization process is mainly

focused on the algorithm's accuracy and energy efficiency, the
privacy aspect during the localization process has been largely
ignored. There are only a few studies [3], [6], [28], [38], [44]
relying on special hardware such as antenna arrays to preserve
the unilateral privacy aspect in the localization process, i.e., an
anchor cannot learn the target's location but the target can ob-
tain the anchors' location information, or vice versa. However,
none of the existing studies has investigated the privacy leakage
issue from the aspects of both the anchors and the target, which
become more important in the increasingly pervasive wireless
environments. For instance, during the crowdsourcing-based lo-
calization [33], [37], GPS-enabled smartphones serve as ad hoc
mobile anchors (a.k.a. helpers) to locate wireless devices (e.g.,
sensors or tablets) that do not own a traditional localization ca-
pability (GPS or cellular). However, these helpers' user-sensi-
tive location information may have to be disclosed to the target
object. Meanwhile, the target also has a concern on its loca-
tion privacy, as it considers the helpers as untrusted and def-
initely does not want them to know the localization outcome,
even though it needs them to participate during the localization
process. Therefore, there is an urgent need to address the pri-
vacy issues during the localization process by considering both
the target object and the anchor points simultaneously.
Toward this end, in this paper we develop privacy-preserving

localization algorithms by considering the privacy issues during
the localization process. In particular, we study the more gen-
eralmulti-lateral privacy preservation problem, whereby the lo-
cation of a target is calculated without the need of revealing an-
chors' location, and the knowledge of the localization outcome
is strictly limited to the target itself. In other words, the location
information of every node, including not only the target but also
the anchors, is considered as private information of that node
and is protected against every other node. Note that here we
are focusing on range-based localization methods. For the dif-
ferent category of range-free localization, such as signal-finger-
print-based localization, its privacy issue has been considered
in [23].
Our approach does not rely on specialized hardware. We

study the privacy-preserving localization problem under a dis-
tributed setup, i.e., participants of localization are restricted to
anchor points (including both public anchors and ad hoc anchor
helpers) and the target. The multi-lateral privacy preservation
solution is more critical for scenarios using ad hoc anchor
helpers (e.g., smartphones). The problem is trivial under a
centralized setup, if there exists a third party trusted by all
anchors and target. However, similar to the privacy argument
frequently raised for LBS, we believe that mobile users who are
concerned about revealing their location to LBS servers will
likely be hesitant to entrust their location data to a third-party
server. This further motivates us to seek a distributed solution
to the problem.

One important feature of our privacy-preserving localization
solution is that it develops unique three-level privacy protec-
tion and thus has the capability to protect any side informa-
tion that may lead to a coarse estimate of the location in ad-
dition to the protection of the exaction location of the target.
The side information during the localization process could in-
clude not only the anchor points' location information, but also
any intermediate result, which is a function of the locations,
e.g., the relative ranging result between the target and the an-
chor. Such side information can usually lead to a coarse es-
timate of the target, which may be sufficient to reveal a large
amount of privacy about the user. For example, our simulations
in Figs. 4 and 5 in Section IV-B have shown that for a multi-lat-
eration-based localization [34], by colluding with 4–5 anchors,
an adversary will be able to estimate a target's location within
an error of 15–30 m. Location uncertainty at this level is usually
good enough for an adversary to identify the POI of a target user
and thus glimpse into the user's privacy. For instance, in a hos-
pital, with this location resolution, the adversary will be able to
identify the department a mobile user is visiting, so it can con-
jecture the specific health problem the mobile user is having.
Note that the requirement of protecting location-side informa-
tion is much stronger than a regular data privacy-preservation
problem, e.g., those modeled by a classical multiparty secure
computation problem [11], [15], [42], whose main goal is just
to hide the value of the data.
To the best of our knowledge, our work is the first to pro-

vide a full range of privacy-overhead-balanced constructions to
address the privacy issues during the localization process. Our
contribution in this paper is threefold.
• We propose and formulate the multi-lateral pri-
vacy-preserving localization problem as a secure
least-squared-error (LSE) estimation for an overdeter-
mined linear system. Different from other applied secure
computation that mainly deals with computation between
two parties, e.g., inner product between two private vec-
tors [10], [43], ours concerns private parameters owned by
multiple parties (corresponding to anchors and the target).
Existing solutions to general secure LSE problems are
based on oblivious transfer or homomorphic encryption,
which typically have high computation complexity, and
are originally designed for two parties only. A straight-
forward extension to multiparty computation will lead to
overwhelming computation and communication overhead.

• We exploit the special structure of our problem to develop
specialized low-cost solutions. In particular, we define
three levels of privacy and develop efficient solutions for
each of them using combinations of information hiding
and homomorphic encryption techniques. These solutions
have the benefit of being able to trade a user's privacy
requirements for better computation and communication
efficiency, which is especially important in a resource-con-
strained mobile computing environment.

• We prove the privacy property for the proposed construc-
tions and evaluate their computation/communication over-
head using analysis and numerical methods. By comparing
to existing LSE solutions, we verify the significant effi-
ciency improvement of the proposed solutions.
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The remainder of the paper is organized as follows. We de-
fine the system model and formulate the problem in Section II.
The proposed privacy-preserving localization protocols are
presented in Section III. Section IV evaluates the performance
of the proposed mechanisms. Related work is reviewed in
Section V, and we conclude our work in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
We consider a general localization scenario where both the

anchors and the target could be either static or mobile. Without
loss of generality, we use the crowdsourcing-based localization
as an example where both the anchors and the target are mobile.
The localization session involves with multiple anchor helpers
(e.g., smartphones) sharing their information so as to help one
target mobile device (e.g., laptop, sensor, or tablet), denoted
as node 0, to decide its location. The session consists of three
phases: anchor discovery, ranging, and location computation. In
the first phase, node 0 recruits mobile anchors by broadcasting
hello messages on all its communication interfaces. A smart-
phone receiving the hello message replies to node 0 to become
an anchor. An anchor needs to satisfy the following two condi-
tions: 1) It needs to be within one-hop communication distance
from the target, so that some type of ranging can be performed.
This means that the anchor is in the same cell as node 0 if a cel-
lular interface is used, or in the same basic service set (BSS) if
a WiFi interface is used. This condition is usually satisfied be-
cause the anchor can receive the hello message in the first place.
2) The anchor must have the knowledge of its location. Node 0
may optionally indicate in the hello message a desired level of
accuracy for anchor's location information (e.g., GPS-enabled).
Only those anchors that satisfy this condition will reply. Let the
number of anchors collected by node 0 be , and denote them
as nodes 1 to , respectively. For node , , denote
its location by , where is the dimension-
ality of the space ( for 2-D localization), and is to be
computed.
In the ranging phase, each anchor estimates its distance to the

target. Let this distance estimate be for node .
Ranging could be based on various methods. For example, if
an anchor and the target are in the same BSS, time-of-arrival
(ToA)-based acoustic ranging is possible, which allows the an-
chor to accurately measure , as experimented in [25]. On the
other hand, if the separation between the anchor and the target
is large (e.g., they are in the same cell), RF ranging [7] will be
used. Such a ranging maps a feature of the received signal (e.g.,
RSS) to communication distance based on certain signal prop-
agation model. Due to uncertainties such as fading and shad-
owing, greater ranging errors are expected. The problem of im-
proving the accuracy of various ranging methods is out of the
scope of this work, as we are mainly focused on the privacy
aspect of the localization. Our privacy constructions do not de-
pend on the selection of ranging methods.
We use the method of multi-lateration for location calcula-

tion [34] due to its simplicity and popularity. The calculation
can be performed either by the target itself or by an anchor or a
third party that will notify the calculation outcome to the target
afterwards. In particular, based on the information of

shared by node 's, , the multi-lateration method
calculates the target location by minimizing the mean squared
error (MMSE) between the measured distances (obtained in the
ranging phase) and the calculated distances (based on location
estimates). More specifically, every node is sup-
posed to satisfy the following condition, respectively:

(1)

where 's are variables. Because this is an over-decided
system ( ) and there are errors in the measurement of

's, it is unlikely that all above equations can be satisfied.
Hence, multi-lateration method estimates the target location

by minimizing the following mean square error:

(2)
B. Problem Statement: Privacy-Preserving Location
Calculation
The system defined by condition (1) is quadratic. Little is

known regarding the secure computation of its MMSE estima-
tion defined in (2). To make the systemmore amenable to secure
computation, we linearize it using the method described in [34].
In particular, (1) can be rewritten as

(3)

For such equations, the quadratic term can be
canceled by subtracting the th equation by the th one
( ), getting the following derived linear system

, where

...
. . .

...
(4)

...

(5)

Rather than solving (2), we focus on the derived linear system,
because its linear nature is more amenable to secure computa-
tion. The closed-form MMSE estimate for this system is given
by

(6)
An observation of the definition of and in (4) and (5) reveals
that normally calculating requires nodes to
disclose their 's to the algorithm.
Now suppose nodes have privacy concern

on 's and consider it as their private information. The
problem of privacy-preserving location calculation is to design
protocols to calculate (6) in such a way that the calculation
does not allow any node , where and
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, to learn information on . Due to the
reason highlighted in Section I, we are interested in distributed
protocols whose calculation only involves nodes .
Note that protecting node 's location privacy means more than
just hiding from other nodes, as a node may be able to
compute an estimate of based on some intermediate results
of the calculation if the protocol is not properly designed. In
particular, depending on the amount of information leakage that
can be tolerated, we define the following three levels of privacy
[for ease of notation, but without leading to ambiguity, here-
after and its MMSE estimation as defined in (6) are used
interchangeably].
Definition 1. Level-I Privacy: When the protocol ends, node 0

knows . A node , where , will not know for
. However, a node can compute by

itself a coarse estimation of .
Definition 2. Level-II Privacy: When the protocol ends,

node 0 knows . A node , where , will not know
for . However, a node can

compute a coarse estimate of by colluding with other nodes.
Definition 3. Level-III Privacy: When the protocol ends,

node 0 knows . A node , where , will not know
for . A node cannot compute a

coarse estimate of even if it colludes with other nodes.
In all three levels of privacy, a node's coordinate is never dis-

closed to other nodes, for all anchors and the target. The main
difference lies in the prevention of a coarse estimate about
(it will be trivial to see that a node will not be able to com-
pute a coarse estimate on an anchor's location). With Level-I
privacy, an anchor will be able to compute by itself a coarse esti-
mate of the target's location. Level-II privacy prevents an anchor
frommaking the above estimation, but is vulnerable to collusion
among anchors. However, note that even though collusion helps
to estimate the location of the target, it does not help to com-
pute the coordinates of other nodes. Finally, Level-III privacy
provides collusion-proof protection for both the actual location
and coarse estimate of the location. We will design a full range
of protocols to realize each of the three privacy levels, and we
will see that the communication/computation overhead of the
protocols increases with the privacy level.
Various use scenarios can be envisioned for the three pri-

vacy levels. Specifically, Level-I privacy is suitable for sce-
narios where the anchors are unlikely to collude (e.g., in a mo-
bile ad hoc scenario), and the target does not have a stringent
location privacy requirement, so that a coarse estimate by an
anchor does not constitute a serious privacy threat to the target.
For example, our simulation in Section IV shows that the es-
timation errors from an independent anchor could reach a few
tens of meters, which may be sufficient to prevent the anchor
from pinpointing to, e.g., the particular room the target is in.
Level-II privacy is suitable for the scenarios where anchors are
unlikely to collude and the target has a high requirement on its
location privacy. Level-III privacy is the strongest one, and it is
suitable for cases where the target requires high location privacy
even in the face of anchor collusion.

C. Privacy Model

We assume that a participant of the localization, including
both the anchors and the target, is honest but curious. A node

executes the computation as specified by the protocol, but is cu-
rious about whatever information of others that could be leaked
during the computation. In addition, we also assume that the
communication between two nodes is encrypted, e.g., based on
symmetric keys, so that privacy leakage does not come from
communication (i.e., no eavesdropping).We do not consider any
active attack a node may launch, such as injection of false loca-
tion information of the anchors, manipulation of the computa-
tion, or modification of (intermediate) results, with a purpose of
misleading or cheating the target. All the above are valid attacks
to the localization, but is out of the scope of this paper. Here, we
mainly focus on preventing privacy leakage in a normal local-
ization computation.
Two scenarios will be considered in our privacy analysis: in-

dependent nodes and colluding nodes. For the former, informa-
tion exchange between nodes only includes those specified by
the protocol. As a result, a node can learn others' privacy only
based on the legal information it receives. In contrast, for the
latter scenario, colluding nodes may establish a side channel to
exchange their information so as to figure out more informa-
tion about others. In particular, colluding anchors can calculate
a coarse estimate on by pooling their location and ranging
results together, so as to form a linear MMSE system similar
to that of (6), but at a smaller scale. Moreover, our analysis also
considers the scenario that the target colludes with some anchors
to compute the location of other anchors.

D. Cryptographic Tool: Paillier Cryptosystem
Part of our constructions rely on the famous Paillier cryp-

tosystem [30], a homomorphic encryption scheme that allows
one to obtain the cipher text of an algebraic operation from
the algebraic operation of the cipher text of the operands. Pail-
lier cryptosystem is summarized below to facilitate the under-
standing of our protocols.
• Key generation: An entity chooses two primes and and
computes and . It then selects
a random such that ,
where . The entity's Paillier public and
private keys are and , respectively.

• Encryption: Let be a plaintext and be
a random number. The ciphertext is given by

.
• Decryption: Given a ciphertext , the
corresponding plaintext is obtained by

.
The Paillier cryptosystem has the following useful properties:
• Homomorphic: For any , we have

• Self-blinding:

The Paillier cryptosystem is semantically secure for sufficiently
large and . We assume that and are 1024 and 160 bits,
respectively, for sufficient semantical security [30]. Under this
assumption, a Paillier encryption needs two 1024-bit exponen-
tiations and one 2048-bit multiplication, and a Paillier decryp-
tion needs one 2048-bit exponentiation. We assume that the key
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management for the Paillier cryptosystem is based on existing
public key infrastructures (PKI), such as those discussed in [36].

III. PRIVACY-PRESERVING LOCALIZATION PROTOCOLS

A. Protocol 1 for Level-I Privacy

Protocol 1 considers localization as an application of linear
regression and is based on the condition that an anchor is
allowed to perform multiple ranging at different locations.
The multi-lateration is based on the multiple ranging results of
all the anchors. Without loss of generality, suppose a node ,

, performs ranging at different locations,
say , respectively (this can be easily extended to
the case that node performs ranging at locations). Denote
the result of the th ranging as , where .
Following a similar linearization process to that in Section II-B,
but this time the cancellation of the quadratic term is conducted
between equations of the same anchor, a linear system de-
scribing the multi-lateration is obtained as follows: ,
where

...
. . .

...

...
. . .

...

...
. . .

...

(7)

...

...

...

(8)

The MMSE estimate for this system is calculated as
. To calculate in a privacy-preserving

fashion, each node follows the following protocol:
Protocol 1:
1) Anchor , , calculates , and

, where

...
. . .

...
(9)

...

(10)

2) All anchors ( ) send their 's and 's to
node 0. Node 0 calculates , ,
and computes .

Protocol Analysis: We now analyze the correctness, privacy,
and computation/communication overhead of Protocol 1.
Theorem 1: Protocol 1 correctly calculates the MMSE esti-

mate for the linear system defined by (7) and (8)
Proof: Note that and defined in (7) and (8) can be

written in terms of 's and 's as ... and

... . Therefore

...

Similarly, ...

. Therefore, . This
proves Theorem 1.
Theorem 2: For independent nodes, Protocol 1 achieves

Level-I privacy when .
Proof: The part related to coarse estimation of is

straightforward: Because an anchor has independent
ranging results, it can use them to roughly estimate as

. Next, we need to show that: 1) an anchor
cannot compute another anchor's location , for

; 2) an anchor cannot calculate node 0's MMSE location
; and 3) node 0 cannot calculate any anchor's any location.

These are proved as follows.
The first condition is clear because an anchor only has its

own location and ranging information to construct and ,
and therefore computes and . For independent nodes, no
information is exchanged between anchors. Thus, just based on
its own and , anchor cannot calculate a different an-
chor 's location.
The second condition is clear because, based on its own in-

formation, an anchor can only calculate and . To calcu-
late node 0's MMSE location, the anchor needs information on

and , for , which cannot be obtained by anchor as
there is no information exchange between anchors in Protocol 1.
Thus, an anchor cannot calculate .
To prove the third condition, consider the general case that

node 0 is trying to calculate anchor 's locations. The only way
node 0 could do that is to calculate the location from the infor-
mation offered by anchor : the matrix and the 1
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vector . Node 0 may derive an equation of variable 's from
each element of and , getting at most indepen-
dent equations. The independent unknowns in these equations
are 's, for and , totaling .
Therefore, when , the number of independent vari-
ables is greater than the number of independent equations. Thus,
node 0 cannot compute anchor 's location.
Combining the above three arguments, Theorem 2 is proved.

Theorem 3: When there are node collusion, Protocol 1
achieves Level-I privacy when .

Proof: There are two possibilities for node collusion:
1) some anchors collude; or 2) some anchors collude with the
target. For case 1, we can simply consider the colluded anchors
as one virtual node. This essentially equals a system with inde-
pendent nodes. According to Theorem 2, Protocol 1 achieves
Level-I privacy when . Similarly, for case 2, the
collusion between the target and an anchor will allow anchor
to learn another anchor, say anchor 's and . However,
with this information, anchor will not be able to figure out
anchor 's location, otherwise node 0 would have already
figured them out. Thus, such collusion does not increase the
number of independent equations that can be used to solve
the locations of those noncolluding anchors. Consequently, we
may consider the colluded target and anchors as one virtual
target. This essentially equals a system with independent nodes.
According to Theorem 2, Protocol 1 achieves Level-I privacy
when . This proves Theorem 3.
The computation overhead of Protocol 1 is dominated by

the matrix multiplications at each anchor, which include one
matrix times one matrix, and one
matrix times one 1 vector. This amounts to

roughly multiplications per anchor, or
multiplications for all anchors. The communication over-

head is due to the transmission of and from anchor ,
, to node 0. This amounts to the communication

of real number per anchor, or real number
for all anchors.

B. Protocol 2 for Level-II Privacy

The essential reason that an anchor can obtain a coarse esti-
mation on in Protocol 1 is because the anchor is allowed to do
ranging at multiple locations. This privacy leakage can be fixed
by enforcing one ranging per anchor. This could be done, e.g.,
by all anchors measuring a pilot signal broadcast by node 0, and
node 0 only broadcasts this signal once. In this case, the linear
system describing the multi-lateration is defined by (4) and (5),
and the MMSE estimate of is given by (6).
The secure linear regression method used by Protocol 1 is

no longer privacy-preserving when being used to compute
(6). To see this, similar to the definition of and in
(9) and (10), now for nodes , we define

and
(instead of a vector,

degenerates to a scalar). Two intermediate steps in the linear
regression leak privacy between nodes: 1) In order for node to
construct and , it requires node to disclose and

to every other anchor. 2) When anchor sends
and to node 0, node 0 can compute the elements in

and from and . Therefore, collectively, node 0 can
recover and , and thus the location of every anchor, from

's and 's, . To enable privacy-preserving
localization in this case, Protocol 2 is developed below. We
rewrite as follows:

(11)

where is a matrix defined as

...
...

...

...
...

...

for

(12)
where all rows other than the th row are is an
matrix defined as

...
...

...
(13)

Note that anchor is able to construct , for ,
based on its own knowledge. Because the row vector

, the above can be concisely written
as for , and

. Accordingly

(14)

It is easy to show that
when and
when and
when and
when and
when .

(15)
Therefore

(16)

Similarly, in (5) can be rewritten as , where
is a 1 column vector defined as

...

...

for (17)
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where all elements other than the th row are is an
1 column vector defined as

... (18)

Therefore

(19)

Defining for , it can be
shown that

when and
when and
when and
when and
when .

(20)

Therefore

(21)

An observation in (16) and (21) shows that in these equations,
the first two terms can be calculated by anchor and anchors

, respectively, based on their own knowledge,
and the last two terms are based on anchor and the aggre-
gation of anchors 1 through . Based on this observation,
Protocol 2 obtains privacy-preserving localization as follows.
Protocol 2:
1) Every node generates random ma-

trices , where , such that
. Node keeps one such matrix, and sends the rest to the
other nodes, respectively. Node creates by
adding up all matrices it receives from other
nodes, with the one it keeps. Note that is a random ma-
trix, and .

2) In a similar way to Step 1, node generates
random 1 vector , such that .

3) In a similar way to Step 1, but this time applied only to
nodes , anchor generates a random 1
vector , such that .

4) In a similar way to Step 1, anchor , where
, generates a random number , such that .

5) Anchor , , calculates and sends
and to the target, and calculates

and sends and to node .
6) Node calculates and . It

then calculates and sends
and

to the target.

7) Node 0 calculates and . It
then calculates .

Protocol Analysis:
Theorem 4: Protocol 2 correctly calculates the MMSE esti-

mate for the linear system defined in (4) and (5).
Proof: The proof is straightforward based on the discus-

sion before the theorem, and therefore is omitted here due to
space limit.
Theorem 5: For independent nodes, Protocols 2 achieves

Level-II privacy when .
Proof: The proof is to show that: 1) no anchor can learn the

location of another anchor; 2) no anchor can learn the location of
the target, not even compute a coarse estimate about the location
of the target; and 3) the target cannot learn the location of any
anchor.
Argument 1 is obvious for anchors because the

only information exchanged between any two anchors and ,
where , is the random matrices and vec-
tors used to generate 's, 's, 's, and 's (corresponding
to Steps 1–4, respectively), which are not related to the loca-
tion of any node. Condition 1 is also true between anchor
and anchor , . This is because the only way
anchor may conjecture the location of anchor is to solve the
linear equation set constructed from knowing 's and 's. By
treating 's, 's, 's, and 's, , as variables,
the total number of variables is , whereas
the total number of independent linear equations node may
obtain is , where the four terms stand
for the number of equations obtained by knowing 's, 's, the
relationship , and , respectively.
It is clear that when , the number of variables is greater
than the number of independent linear equations, and therefore
anchor cannot calculate the location of other anchors.
Argument 2 is true because from (16) and (21) it is clear that

calculating the MMSE estimate requires all 's and 's,
. For independent nodes, no single anchor has

all the required information. Therefore, no anchor can calculate
the location of the target. Moreover, because node only has
its own location and ranging information and (note that
anchor cannot recover another anchor's location and ranging
information from and because of the randommask and
), the best it can do to estimate is just a random guess within

a circle of radius centered at . However, such a random
guess is not the type of estimate we have defined in Section II.
Argument 3 can be proved in a similar way to the proof of

argument 1. In particular, the only way the target can calcu-
late the location of an anchor is to solve the linear equation
set constructed from knowing 's and 's. By treating 's,

's, 's, and 's, , as variables, the total number
of variables is . The total number of
independent linear equations the target may obtain is at most

, where the four terms stand for the number
of equations obtained by knowing 's, 's, the relationship

, and , respectively. It is easy to see
that when , the number of variables is greater than the
number of equations, and therefore the target cannot calculate
the location of any anchor.
Combining the above arguments, Theorem 5 is proved.
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Theorem 6: When the number of colluding anchors is less
than half of and the number of noncolluding anchors is
greater than , Protocol 2 achieves Level-II privacy.

Proof: When anchors collude, the leak of a coarse estimate
of by Protocol 2 is inevitable because the colluding anchors
can pool their location and ranging information together to con-
struct a smaller-scale multi-lateration linear system to locate the
target. To prove the rest of the theorem, we need to show that the
collusion does not help to reveal the location of the target and
noncolluding anchors. We consider the following two collusion
scenarios: 1) the colluded nodes do not include the target; and
2) the colluding nodes include the target.
For scenario 1, we only need to show that: a) the colluding an-

chors cannot learn the location of those noncolluding anchors;
and b) the colluding anchors cannot learn the location of the
target. These can be proved by noting that when the number
of colluding anchors is less than half of , the colluding
nodes cannot compute the 's, 's, 's, and 's of those non-
colluding anchors. This is because under the way 's, 's,

's, and 's are made, as specified in Steps 1–4 of the pro-
tocol, the number of linear equations that can be constructed
from colluding nodes' 's, 's, 's, and 's is smaller than
the number of unknowns for noncolluding nodes. Therefore, for
Part a), even if node is colluding (this is the worst case that
colluding nodes possess the maximum amount of information),
the colluding nodes still have difficulty in computing the loca-
tion of those noncolluding nodes. In particular, except node ,
suppose the number of noncolluding anchors is . By treating
's, 's, 's, and 's of those noncolluding anchors as the

variables, the total number of variables is . The number
of independent linear equations the colluding nodes may obtain
is at most , where the four terms stand for the
number of equations obtained by knowing 's and 's of the
noncolluding anchors, and the relationships and

, respectively. It is easy to see that when ,
the number of variables is greater than the number of indepen-
dent equations, so the colluding nodes cannot compute the lo-
cation of noncolluding nodes. The proof of Part b) is straight-
forward: Colluding nodes do not have the full knowledge of all
's and 's (for ), therefore they cannot compute
.
For scenario 2, we only need to show that the colluding nodes

cannot compute the location of noncolluding anchors. To do
that, we only consider one particular case—node and the
target are among the colluded nodes—the case whereby the col-
luded nodes possess the maximum amount of information. We
show that even under this extreme case, the colluding nodes
still have difficulty in computing noncolluding anchors' loca-
tion, so they will not be able to do it under other (less infor-
mative) cases. Specifically, suppose that, except node , the
number of noncolluding anchors is . By treating the 's, 's,
's, 's, 's, and 's of those noncolluding anchors as the

variables, the total number of variables is . The
total number of independent linear equations obtained by the
colluded nodes is at most ,
where the first four terms stand for the equations obtained by
the 's, 's, 's, and 's of the noncolluding nodes, respec-
tively. The last four terms stand for equations obtained from

the relationship , , ,
and , respectively. It is easy to show that when

, the number of variables is guaranteed to be greater
than the number of independent linear equations, and there-
fore the colluded nodes cannot compute the location of noncol-
luding nodes. Combining the arguments for scenarios 1 and 2,
Theorem 6 follows.
The computation overhead of Protocol 2 is dominated by the

vector multiplications in Steps 5 and 6. Specifically, a node ,
, needs to perform multiplications

in Step 5. Node performs roughly multiplications
in Step 6. Hence, the total number of multiplications for all
anchors is . For a node , ,
the numbers of elements it transmits in Protocol 2 are
(in Step 1), (in Step 2), (in Step 3), (in
Step 4), (in Step 5), or
per anchor. For node , the numbers of elements it transmits in
the protocol are (in Step 1), (in Step 2), and

(in Step 6), or all steps together. Hence, the
total number of elements transmitted in the protocol is roughly

. Assuming each element is represented by
24 bits, in total Protocol 2 needs to transmit

bits in one localization operation.

C. Protocol 3 for Level-III Privacy
In Protocol 2, the main reason that a group of colluding an-

chors can calculate a coarse estimate of is because an anchor
has the knowledge of both its location and the ranging informa-
tion. This privacy breach can be fixed by separating the owner-
ship of these two pieces of information. In particular, an anchor
still knows its location, but the target will be the one to perform
ranging, for every anchor. Anchors are required to transmit a
pilot signal by turns, and the target estimates the distance to
every anchor via the received signal strength of that anchor's
pilot signal. As a result, , , becomes the private
information of the target. Hence, the privacy-preserving local-
ization problem becomes how to compute (6) based on the pri-
vate ranging information of the target and the private location
information of the anchors.
Our solution is built upon Protocol 3, with a modified com-

ponent that calculates the cross terms between 's and 's in
a privacy-preserving fashion. More specifically, it can be ob-
served that the above cross terms only appear in the calcula-
tion of [i.e., (19)]. To separate the calculation of the cross
terms, (19) can be rewritten as follows:

(22)

where

...

...

, for ,

... , and ...
.
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Modifying the definition of in Protocol 2 to ,
for , it is clear that the first term on the right-hand
side (RHS) of (22) can be securely computed using Protocol 2.
As a result, , where is calculated
according to Step 7 of Protocol 2.
Defining , can be calculated as

...
, for , and ...

,

where . Thus, the second term on the RHS
of (22), , can be securely computed using the fol-
lowing Pailliar homomorphic encryption algorithm.
Algorithm 1:
1) Every node generates random 1 vec-

tors , where , such that .
Node keeps one such vector, and sends the rest to the
other nodes, respectively. Node creates vector
by adding up all vectors it receives from other
nodes, with the one it keeps. As a result, is a random
vector, and .

2) For node , the target securely calculates
in the following way.

a) Using its public Paillier key, the target calculates the
following ciphertexts for node : and ,
and sends these ciphertexts to node .

b) Node calculates the following sequentially for
: ,
, ,

where is the th element of vector . Node
sends , , to the target.

c) The target decrypts , ,
to construct .

3) For node , the target securely computes in
the following way.
a) Using its public Paillier key, the target calculates the

following ciphertexts, and , and sends
these ciphertexts to node .

b) Node calculates the following sequentially for
: ,

,
. Node sends , ,

to the target.
c) The target decrypts , ,

to construct .
4) The target calculates

Based on the above algorithms, collusion-resilient Protocol 3
is as follows.
Protocol 3:
1) Based on the revised definition of , execute

Protocol 2. The target node obtains and .
2) Execute Algorithm 1. The target obtains .
3) The target calculates .
Protocol Analysis: We now analyze the correctness, privacy,

and computation/communication overhead of Protocol 3.
Theorem 7: Protocol 3 correctly calculates the MMSE esti-

mate for the linear system defined in (4) and (5).

Proof: The proof is straightforward based on the discus-
sion preceding the protocol, and therefore is omitted here due
to space limit.
Theorem 8: For both independent and colluding-node cases,

as long as the number of colluding nodes is less than half of
and the number of noncolluding nodes is greater than

, Protocol 3 achieves Level-III privacy.
Proof: Because Protocol 3 is built upon Protocol 2, and we

have proved that Protocol 2 achieves Level-II privacy, here we
only need to show that: 1) under Protocol 3, an anchor cannot
compute a coarse estimate about , no matter if it colludes with
other anchors or not; 2) a node cannot compute any other node's
location, no matter if it colludes with other nodes or not.
For argument 1, the proof for the independent-node case

is straightforward because what an anchor knows is no more
than its own location information. To prove the colluding-node
case, we point out that the Paillier homomorphic encryption
in Steps 2 and 3 of Algorithm 1 prevents an anchor from
learning its ranging information. Therefore, colluding anchors
only know their own locations. Without knowing the ranging
information, colluding nodes cannot compute a rough estimate
about .
For argument 2, the case for the independent-node can be

proved by noting that Algorithm 1 does not leak any information
about an anchor's location, 's, to the target, because of the
random mask 's in Steps 2 and 3 of the algorithm. Hence,
the execution of Algorithm 1 in Step 2 of Protocol 3 does not
allow the target to calculate any anchor's location. Meanwhile,
an anchor will not be able to calculate the location of the target
and other anchors because now it has less information than it
does in Protocol 2 (ranging information is now owned by the
target).
The colluding-node case for argument 2 can be further di-

vided into two subcases: 1) all colluding nodes are anchors; and
2) the target is one of the colluding nodes. For subcase 1, the
colluding nodes should not be able to calculate the location of
the target and other anchors because now these colluding nodes
own less information than they do in Protocol 2 (ranging infor-
mation is now owned by the target). For subcase 2, we need to
show that even under the help of the target, the colluding nodes
still cannot calculate the location of other noncolluding anchors.
This can be shown by noting that in this subcase the relevant
knowledge owned by colluding nodes will be no more than the
distance between a noncolluding node and the target. However,
just knowing this distance is not enough to calculate the location
of the noncolluding node. Except for a random guess, a reason-
able estimate on the location of the noncolluding node, as de-
fined in Section II, is also not possible.
Combining the above arguments, Level-III privacy is

achieved by Protocol 3.
The computation overhead of Protocol 3 is dominated by the

secure computation of the Paillier cryptosystem in Steps 2 and
3 of Algorithm 1. For every node , , the calcula-
tion in Steps 2 and 3 of Algorithm 1 involves one Paillier en-
cryption, one Paillier decryption, 2048-bit exponentiations,
and 2048-bit multiplications. Overall, this amounts to
1024-bit exponentiations, 2048-bit multiplications,
and 2048-bit exponentiations for all the nodes per
localization operation.
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TABLE I
PROTOCOL OVERHEAD

The communication overhead of Algorithm 1 is mainly due
to the Paillier secure computation in Steps 2 and 3, and the ex-
change of vectors in Step 1. In particular, for a node ,

, it transmits 1 real vectors in Step 1,
and transmits 2048 bits ciphertext of the secure computation
results in Steps 2 or 3. Assuming that an element of the vector

is represented by 24 bits, the total traffic transmitted in Al-
gorithm 1 is bits. Therefore, in total,
Protocol 3 needs to transmit roughly

bits in one localization operation.

IV. PERFORMANCE EVALUATION

A. Computation and Communication Overhead
In this section, we compare the computation and communica-

tion overhead of the proposed protocols to prior results based on
numerical examples.We are not aware of any existing algorithm
that is specifically designed for preserving the multi-lateral pri-
vacy in localization. Therefore, we only consider the general
multiparty secure LSE algorithm that can be applied to com-
pute the MMSE estimate of [i.e., (6)] in a privacy-preserving
fashion. In particular, we consider two well-known algorithms:
one based on oblivious transfer (OT) [11] and the other on ho-
momorphic encryption (HE) [17]. The original design of both
algorithms only considers secure computation between two par-
ties. A straightforward extension to -party ( ) secure
computation requires executing the 2-party algorithm for every
pair of nodes [17]. Therefore, the computation and communica-
tion overhead of the -party computation is times of that of
the 2-party one. Moreover, note that OT and HE cannot prevent
anchors from guessing by forming collusion, and therefore
they can only achieve Level-II privacy. The level of privacy,
computation complexity, and communication cost (in number
of transmitted bits) of the proposed protocols and the prior al-
gorithms are summarized in Table I.
In Table I, is the protection parameter for the oblivious

transfer operation in OT. As suggested by [11], is
assumed. We also have assumed that a real number is repre-
sented by 24 bits. The notations of , , , and represent
the operations of 24-bit multiplication, 2048-bit multiplication,
1024-bit exponentiation, and 2048-bit exponentiation, respec-
tively. In our numerical examples, we assume the following ex-
ecution time for these operations: s, ms,

ms, and ms. The setting of these pa-
rameters is based on the mean value of the benchmark test result
in [43], which is obtained on a LG P-970 smartphone equipped
with a 1-GHzCortex-A8CPU, 512MBRAM, andAndroid v2.2
OS. We also assume communication between nodes has a band-
width of 2 Mb/s.

Fig. 1. Computation cost.

Our performance metrics include total computation time,
total number of transmitted bits, and the protocol execution
time. The first two metrics measure the summation of the CPU
time and the numbers of bits transmitted over all participants
of the localization. The protocol execution time is defined as
the summation of time consumed by each step of the protocol,
including both computation and communication overhead.
The steps that are executed in parallel by multiple nodes are
only counted once. We only present the results for the 2-D
localization ( ), due to its popularity. The trends for 3-D
case are similar.
1) Numerical Results: We plot the computation cost as a

function of the number of anchors in Fig. 1. It can be observed
that for Protocols 1–3, their computation cost increases with
their level of privacy. This is not surprising, as a higher privacy
level implies more protection, which can only be obtained by
more complicated computation. Moreover, the proposed proto-
cols are much more computationally efficient than HE and OT.
In particular, Protocols 1 and 2 reduce the total CPU time by at
least 2 orders of magnitude when compared to HE and OT. The
computation cost of Protocol 3 is about 1/10–1/100 to that of
HE, and is comparable to that of OT. In general, protocols that
are based on cryptographic encryptions are much more com-
putationally expensive than the ones that are not because of the
long-bit multiplications and exponentiations required by the en-
cryption/decryption. Protocol 3 has a lower computation cost
than HE because only part of its construction is based on Pail-
lier encryption. In contrast, the HE algorithm fully relies on ho-
momorphic encryption.
We compare the communication cost of various protocols in

Fig. 2. It can be observed that, for Protocols 1–3, their commu-
nication overhead increases with the level of privacy—a phe-
nomenon similar to their computation cost. On the other hand,
their communication cost is much smaller than that of HE and
OT. HE has a high communication cost because its calculation
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Fig. 2. Communication cost.

Fig. 3. Protocol execution time.

is fully performed in the encrypted space. The input of the calcu-
lation, i.e., the ciphertext, has 2048 bits and is much longer than
the 24-bit real number used in Protocols 1 and 2. On the other
hand, Protocol 3 is only partially based on homomorphic en-
cryption, and therefore requires less transmission of ciphertexts,
yielding higher communication efficiency than HE. The high
communication cost of OT is resulted from the large number of
random matrices transmitted between each pair of nodes in the
oblivious transfer operation.
The protocol execution time of various mechanisms is plotted

as a function of the number of anchors in Fig. 3. Once again, it
can be observed that the execution time of the three proposed
protocols increases with their privacy level, but are all smaller
than that of the generic HE and OT algorithms. In particular,
the execution time of Protocols 1–3 ranges from a few millisec-
onds to hundreds of milliseconds. This indicates that the pro-
posed protocols are very practical. Moreover, it can be observed
from Fig. 3 that the execution time of Protocol 3 changes little
with the number of anchors. This is not surprising, as the execu-
tion time of Protocol 3 is dominated by the Paillier-based secure
computation of 's, which can be distributed to each
anchor and be computed in parallel by all the anchors.

B. Estimation of Target Location by Collusion
To illustrate how well an anchor can estimate the location

of the target by colluding with others, in this section we study
the localization accuracy as a function of the number of col-
luding anchors using computer simulations. We consider a
500 m 500 m square area. We assume that the target is lo-
cated at the center of the square, and the anchors are uniformly
randomly distributed in the area. Colluding anchors pool their

Fig. 4. Localization error (low-ranging error case).

Fig. 5. Localization error (high-ranging error case).

location and ranging information together and use multi-lat-
eration mechanism to estimate the location of the target. A
ranging outcome is simulated as the actual distance ( )
plus a ranging error, . We consider two distribu-
tions for the ranging error : 1) a Gaussian distribution with 0
mean and standard deviation , and 2) a uniform distribution
over the range . These two distributions may represent
unbounded and bounded ranging errors, respectively. For each
data point, we performed 500 independent runs and report the
average and 95% confidence interval of the results.
The localization errors of the target under low ( m)

and high ( m) ranging errors are plotted in Figs. 4 and
5, respectively. Similar trends can be observed in both figures.
In particular, under low-ranging errors, for the Gaussian error
model, by colluding with four to five other anchors, one can es-
timate the location of the target with an accuracy of 20m. For the
uniform error model, an anchor can even achieve a 10-m estima-
tion error by colluding with another two anchors. The smaller
estimation error in this case is due to the bounded ranging error
under uniform distribution. Under high-ranging errors (Fig. 5),
the estimation under the same collusion size becomes less ac-
curate. However, in general, an anchor can achieve a 30-m es-
timation error by colluding with six to seven other anchors. As
pointed out in Section I, location resolution at such a level has
been sufficient to leak privacy of the target. These observations
indicate that it may be unnecessary for an anchor to collude
with many others in order to glimpse into the target's privacy—a
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small-size collusion, which is relatively easy to form, could be
enough. This highlights the necessity of the Level-III privacy
achieved by Protocol 3.

C. Location Privacy
As pointed out in Section III, an anchor in the proposed pro-

tocols may be able to obtain a coarse estimation of the target's
location. In this simulation, we evaluate the target's location pri-
vacy resulted from such estimation under the proposed proto-
cols. In particular, we measure the target's location privacy by
the uncertainty area in the anchors' estimation, which is a circle
centered at the estimated target location and has a radius of the
95th percentile of the localization error (i.e., the true location
of the target should be within this uncertainty area with a 95%
probability). The larger the uncertainty area, the stronger the lo-
cation privacy of the target will be. Note that such an uncer-
tainty-area-based privacy measurement is compatible with the
commonly used -anonymity metric, in the sense that it can be
converted to the -anonymity measure by multiplying with the
density of nodes in the area.
Our simulations are based on the same setup as in

Section IV-B. Moreover, we assume that 20 anchors are used
for target localization by Protocol 2, Protocol 3, OT, and HE,
respectively. To make a fair comparison, we assume that five
mobile anchors are used by Protocol 1, in which each anchor
performs ranging at four different places, so that the location
estimation by the protocol is also based on 20 pairs of anchor
locations and ranging outcomes. In each simulated case, we
assume that an arbitrary anchor will try to obtain a coarser
estimation of the target location by colluding with a subset of
randomly selected anchors. We vary the number of colluding
anchors and measure the corresponding uncertainty area in
the anchors' estimation based on 500 independent runs. The
uncertainty area in the anchors' estimation is normalized w.r.t.
the (smaller) uncertainty area in the (more accurate) protocol's
estimation.
The normalized uncertainty areas under low ( m)

and high ( m) Gaussian ranging errors are plotted in
Figs. 6 and 7, respectively. The results under uniform ranging
errors have similar trends, and thus are omitted here for concise
presentation. Similar trends can be observed in both figures.
In particular, it is clear that for Protocols 1–3, their location
privacy increases with their level of privacy. This is as expected
from the design of these protocols. Specifically, Protocol 1
has the lowest privacy strength because each colluding anchor
in Protocol 1 can contribute multiple (4 in the simulation)
samples of anchor location and ranging outcome, which greatly
improve the estimation accuracy under the same number of
colluding anchors. On the contrary, Protocol 3 has the best
privacy strength and is immune to anchors' collusion because
the collusion of the anchors under this protocol will not leak
any ranging information, and thus no estimation on the target
location can be made by the colluding anchors. The privacy
strength of Protocol 2 is in the middle because each colluding
anchor can contribute only one sample of anchor location,
and ranging outcome to the estimation, smaller than that of
Protocol 1 but greater than protocol 3. The OT and HE methods
have the same privacy strength as Protocol 2 because they all

Fig. 6. Target location privacy (low-ranging error case).

Fig. 7. Target location privacy (high-ranging error case).

achieve Level-II privacy. Moreover, Figs. 6 and 7 also verify
that Protocols 1–3 do achieve their intended levels of privacy.
Specifically, it shows when an anchor in Protocol 1 tries to
estimate the target location by itself, its estimation is signifi-
cantly coarser (roughly 10 times coarser in the simulation) than
that by the protocol, which is desired by the Level-I privacy.
Meanwhile, just as required by the Level-II privacy, Protocol
2 can achieve the maximum privacy strength when there is no
node collusion ( and normalized uncertainty areas in
Figs. 6 and 7, respectively.). Finally, Protocol 3 always retains
the maximum privacy strength irrespective of anchor collusion,
conforming with the requirement of the Level-III privacy.

V. RELATED WORK

Despite the large body of work on privacy-preserving access
to LBS, only limited results exist on privacy-preserving local-
ization. In particular, localization methods can be broadly clas-
sified into two categories: 1) range-based, and 2) range-free. For
range-free localization, e.g., those based on signal fingerprints,
the localization privacy problem has been addressed in [23]
using Paillier homomorphic encryption. Our work belongs to
range-based localization. In this category, existing work mainly
focuses on protecting the unilateral privacy of the target using
physical-layer technologies. Based on the basic observation that
an adversary needs to be within the communication range of
the target in order to calculate its location, early work reduces
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the adversary's chance of attack by reducing the spatial foot-
print of the target's communication. This is achieved by either
reducing the target's communication range through power con-
trol [20], or by changing the transmission from omnidirectional
to a shaped beam using antenna arrays [40]. A side effect of
these approaches is the reduced number of anchors in the target's
communication range, and hence the localization accuracy is
compromised. Subsequent methods overcome this weakness by
optimizing the radiation pattern of the antenna array so that its
location privacy is protected while the communication quality
is not affected. In particular, [38] proposed methods of antenna
pattern synthesis to create forged location. Reference [28] ex-
tends the effort to multiple mobile nodes by leveraging coop-
eration among nodes in close vicinity and utilizing synchro-
nized transmissions to obfuscate localization of adversary. On
the other hand, unilateral localization privacy is also achieved
by the target intentionally injecting a measurement error, which
is secretly held by the target, into the ranging outcome. As a
result, the target is the only one that can remove the error and
calculate the right location. Reference [44] proposed to induce
such a measurement error by manipulating the signal's propa-
gation time. Reference [3] achieves the same goal for an RFID
system by controlling RFID tag's response time to the inquiry
of the RFID reader.
Different from the previous studies, we develop multi-lateral

localization privacy preservation techniques to protect not only
the target location, but also the location information of the
anchors together with any side information that could derive
the coarse-grained position of the target. We formulate our
problem as a secure LSE estimation for an overdetermined
linear system. Although a secure LSE problem can in general
be solved using the classical secure multiparty computation
(SMC) techniques [15], e.g., the secure computation circuit
method [15], [42], the oblivious transfer method [11], [19],
and the method fully based on homomorphic encryption [17],
it suffers from high computation/communication cost, which
usually renders these methods impractical for real-world prob-
lems. To lower the cost, in practice these methods are typically
used for two-party computations only, e.g., the secure calcu-
lation of set intersection [9], [22], private inner product [14],
and the privacy-preserving matching [10], [43]. In contrast,
our problem involves computation among many parties in
order to achieve high localization accuracy, and requires high
computation/communication efficiency due to the severe re-
source-constrained environment in mobile computing. This
renders the existing general SMC techniques unsuitable to
our problem. On the other hand, efficient solutions have been
proposed for the secure LSE problem based on the centralized
commodity-server framework [12], [21], if a trusted central
server exists in the computation. Note that such solutions are
not applicable to our problem because ours has a distributed
setup and no trusted central server can be assumed.

VI. CONCLUSION

In this paper, we address the privacy leakage problem during
the localization process and prevent the leakage of the location
information of both the target as well as anchors simultaneously.

We have developed three multi-lateral privacy-preserving local-
ization schemes that can provide different levels of protection
for any intermediate location-related information and resilience
to anchor node collusion, in addition to the unique capability of
hiding the exact location for both the target and anchors at the
same time. By taking advantage of the combinations of informa-
tion hiding and homomorphic encryption, the proposed schemes
only incur low cost in computation/communication overhead,
and can trade user's privacy requirements for better compu-
tation/communication efficiency, which is especially desirable
in a resource-constrained mobile computing environment. Our
current constructions are based on the popular multi-lateration/
triangulation localization models involving ranging. Our future
work will extend the proposed solutions into range-free models,
such as those based on signal fingerprints.
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